
Continuous Markovian Logic - From Complete
Axiomatization to the Metric Space of Formulas∗

Luca Cardelli1, Kim G. Larsen2, and Radu Mardare2

1 Microsoft Research Cambridge
7 J J Thomson Ave Cambridge CB3 0FB, UK
luca@microsoft.com

2 Department of Computer Science, Aalborg University
Selma Lagerlofs Vej 300, DK-9220 Aalborg, Denmark
{kgl,mardare}@cs.aau.dk

Abstract
In this paper we study the Continuous Markovian Logic (CML), a multimodal logic that expresses
quantitative and qualitative properties of continuous-space and continuous-time labelled Markov
processes(CMPs). The modalities of CML approximates the rates of the exponentially distributed
random variables that characterize the duration of labeled transitions. We propose a sound-
complete Hilbert-style axiomatization for CML against the CMP-semantics and prove the small
model property. It is known, from the similar case of probabilistic systems, that such a logic
characterizes bisimulation and supports the definition of a distance between a model and a formula
that quantifies the satisfiability relation; only that this distance is not always computable. We
prove that in our case it can be approximated, within a given error, by using a distance between
logical formulas that we define relying on the small model property of CML.
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1 Introduction

Many complex natural and man-made systems (e.g., biological, ecological, physical, social,
financial, and computational) are modeled as stochastic processes in order to handle either
a lack of knowledge or inherent randomness. These systems are frequently studied both in
interaction with discrete systems, such as controllers, or with interactive environments having
continuous behavior. This context has motivated research aiming to develop a general theory
of systems that is able to uniformly treat discrete, continuous and hybrid interactive systems.
Two of the central questions of this research are “when do two systems behave similarly up
to some quantifiable observation error?” and “is there any (algorithmic) technique to check
whether two systems have similar behaviours?”. Both these questions are also related to
the problems of state reduction (collapsing a model to an equivalent reduced model) and
discretization (reduce a continuous or hybrid system to an equivalent discrete one), which
are cornerstones in the field of stochastic systems.
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2 Continuous Markovian Logic

In the case of probabilistic systems, probabilistic bisimulation [16] relates systems with
identical probabilistic behaviours. Along this line, it has been shown that a probabilistic
multimodal logic (PML) [15, 16, 1, 10, 12], with operators indexed by the probabilities of the
labelled transitions, characterizes probabilistic bisimulation: the logical equivalence induced
on probabilistic models coincides with their bisimulation [16, 18, 9]. But in spite of the
elegant theories supporting it, the concept of bisimulation remains too strict for applications,
as it reflects only identical behaviours. In modelling, the values of the parameters (rates or
probabilities) are in most of the cases approximations and consequently, one is interested to
know whether two processes that differ by a small amount in real-valued parameters show
similar (not necessarily identical) behaviours. In such cases, instead of bisimulation relation,
we need a metric to estimate the degree of similarity of two systems in terms of behaviours.

To solve this problem for probabilistic systems, a class of pseudometrics have been
proposed [19, 5, 18], to quantify the similarity of processes: two processes are at distance zero
iff they are bisimilar; otherwise, they are closer when they differ by a small amount in their
probabilistic behaviours. Moreover, it has been shown that these metrics can be defined on top
of PML [5, 18]. One can extend the satisfiability relation of PML, P  φ, to a function d such
that d(P, φ) ∈ [0, 1] measures the degree of satisfiability between the process P and formula
φ. d induces a distance D between processes by D(P, P ′) = sup{|d(P, φ)− d(P ′, φ)|, φ ∈ L},
where L is the set of logical formulas. Because L is infinite, it is not always possible to have
an algorithm to compute D. Moreover, if P is infinite or extremely big, already evaluating
d(P, φ) is problematic. Sometimes, for a given P and φ, approximation techniques such as
statistical model checking [14, 20] can help to evaluate d(P, φ) within a given error.

Relying on the observation that PML plays a central role in all the above mentioned
developments for the case of probabilistic models, in this paper we take the challenge of
developing and studying the similar logic for the case of stochastic (Markovian) processes.
Our models are continuous-time and continuous-space labelled Markovian processes (CMPs),
similar to the models proposed in [9, 3]. CMPs generalize probabilistic models such as
labeled Markov processes [18, 8, 4, 7] and Harsanyi type spaces [11, 17]. Our logic, called
continuous Markovian logic (CML), involves modal operators indexed with transition labels
a and positive rationals r: Larφ states that the rate of the a-transitions from the current state
to the set of states satisfying φ is at least r, and Ma

r φ states that the same rate is at most r.
In spite of their syntactic similarities, CML and PML are very different. While in the

probabilistic case the two modal operators are dual, being related by the ruleMa
r φ = La1−r¬φ,

in the stochastic case they are independent. And there exists no sound equivalence of type
¬Xa

r φ ↔ Y as ¬φ for X,Y ∈ {L,M}, that generate some kind of positive normal forms for
CML formulas, because the rate of the transitions from a given state m to the set of states
satisfying φ is not related to the rate of the transitions from m to the set of states satisfying
¬φ. The differences are reflected in the sound-complete axiomatizations that we present
both for CML and for its fragment without Ma

r -operators: many axioms of PML [12, 21, 10]
are not sound for CMPs, such as ` Lar> or ` Larφ→ ¬Las¬φ for r + s < 1. Also at the level
of the small model property, which in the case of PML [21] relies on the fact that for a fixed
integer q there exist a finite number of integers p such that p/q ∈ [0, 1], a series of nontrivial
additional problems rise in the stochastic case.

The construction of a small model for a consistent CML-formula is the cornerstone of
this paper supporting not only the completeness proofs, but also an approximation technique
to evaluate the extension d(P, φ) ∈ [0, 1] of the satisfiability relation for CML. Because CML
is completely axiomatized against CMPs and it characterizes stochastic bisimulation, we can
approach the bisimulation-distance problems, addressed semantically in the probabilistic case
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[19, 5, 18], as syntactic problems centered on provability. Formally, we define the distance
d(φ, ψ) = sup{|d(P, φ) − d(P,ψ)|, P ∈ P} induced by d over the space of logical formulas,
where P is the class of CMPs. In the context of the complete axiomatization, d measures
the similarity between logical formulas in terms of provability: φ and ψ are close, if they are
logically equivalent or can be both (or their negations) proved from the same hypothesis. And
strong robustness theorem holds: d(P, φ) ≤ d(P,ψ) + d(φ, ψ). But the problem here is that d
is not always computable, as it quantifies over the entire class of CMPs (which are infinite
processes). At this point, our technique for constructing a finite model for a consistent formula
plays its role: we can approximate d(φ, ψ) by d̃(φ, ψ) = max{|d(P, φ)−d(P,ψ)|, P ∈ Ωp[φ, ψ]},
where Ωp[φ, ψ] is the finite model (finite set of processes) constructed for φ∧ψ if it is consistent,
or for ¬(φ ∧ ψ) otherwise, and p ∈ N is the parameter involved in the construction. This
proves the weak robustness theorem: d(P, φ) ≤ d(P,ψ) + d̃(φ, ψ) + 1/p, which is very useful
in applications where it is expensive to evaluate d(P, φ). In such a case, one can evaluate
d(P,ψ) for a certain formula ψ and, using the weak robustness theorem, obtain for free
an evaluation of d(P, φ) for any formula φ. Of course, the accuracy of this approximation
depends on how similar φ and ψ are from provability perspective which influences both the
distance d̃(φ, ψ) and the parameter p of the finite model construction.

To summarize, the achievements of this paper are as follows.
We introduce Continuous Markovian Logic, a modal logic that expresses quantitative and
qualitative properties of continuous Markov processes. CML is endowed with operators
that approximate the labelled transition rates of CMPs and allows us to reason on
approximated properties. This logic characterizes the stochastic bisimulation of CMPs.
We present two sound-complete Hilbert-style axiomatizations, for CMP and for its Ma

r -
free fragment. These are very different from the similar probabilistic case, due to the
structural differences between probabilistic and stochastic models. In the stochastic
context Ma

r and Lar are independent operators and this induces significant differences
between the axiomatization of the entire CML and of its fragment without Ma

r operators.
We prove the finite model properties for CML and its restricted fragment. The construc-
tions of the finite models are novel in the way they exploit the granularity and the
Archimedian properties of positive rationals.
We define a distance between logical formulas that relates with the distance between
a model and a formula proposed in the literature (for probabilistic systems) to prove
the robustness theorems. The organization of the space of logical formulas as a metric
space with a pseudometric sensitive to the axiomatization and provability is a novelty
in the field of metric semantics. Also the robustness theorems, that use simultaneously
quantifications on semantic and syntactic levels, are original results.
We show that the complete axiomatization and the finite model construction can be used
to approximate the syntactic distance d. This idea opens new research perspectives on
the direction of designing algorithms to estimate such distances within given errors.

The structure of the paper. The first section establishes the background and some
preliminary concepts used in the paper. Section 3 introduces CMPs and their bisimulation. In
Section 4 we define the logic CML and in Section 5 we present sound-complete axiomatizations
for both CML and itsMa

r -free fragment proving, at the same time, the small model properties.
Section 6 introduces the metric semantics and the results related to metrics and bisimulation.
We also have a section with conclusions and future work and an Appendix with additional
definitions and proofs.
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2 Preliminary definitions

In this section we introduce some notations and establish the terminology used in the paper.
For arbitrary sets A,B, 2A denotes the powerset of A and [A→ B] the set of functions

from A to B.
Given a set M , Σ ⊆ 2M that contains M and is closed under complement and countable

union is a σ-algebra overM ; (M,Σ) is a measurable space and the elements of Σ are measurable
sets. Ω ⊆ 2M is a base for Σ if Σ is the closure of Ω under complement and countable union;
we write Ω = Σ.

Given a relation R ⊆M×M , N ⊆M is R-closed iff {m ∈M | ∃n ∈ N, (m,n) ∈ R} ⊆ N .
If (M,Σ) is a measurable space and R ⊆M×M , Σ(R) denotes the set of measurable R-closed
subsets of M .

A measure on (M,Σ) is a function µ : Σ→ R+ such that µ(∅) = 0 and for {Ni|i ∈ I ⊆
N} ⊆ Σ with pairwise disjoint elements, µ(

⋃
i∈I Ni) =

∑
i∈I µ(Ni).

Let ∆(M,Σ) be the class of measures on (M,Σ). We organize it as a measurable space
by considering the σ-algebra generated, for arbitrary S ∈ Σ and r > 0, by the sets

{µ ∈ ∆(M,Σ) : µ(S) ≥ r}.

Given two measurable spaces (M,Σ) and (N,Θ), a mapping f : M → N is measurable if
for any T ∈ Θ, f−1(T ) ∈ Σ. We use JM → NK to denote the class of measurable mappings
from (M,Σ) to (N,Θ).

Given a set X, a pseudometric on X is a function d : X ×X → R+ such that
1. ∀x ∈ X, d(x, x) = 0;
2. ∀x, y ∈ X, d(x, y) = d(y, x);
3. ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(y, z).
d is a metric on X if, in addition, satisfies
4. ∀x, y ∈ X, if d(x, y) = 0, then x = y.
If d is a metric, then (X, d) is a metric space.

Given a pseudometric on X, one can define an equivalence on X by pairing the elements
at distance zero.

Central for this paper is the notion of an analytic set. We only recall here the main
definition and mention the properties of analytic sets used in our proves. For detailed
discussion on this topic related to Markov processes, the reader is referred to [18] (Section
7.5) or to [6] (Section 4.4).

A metric space (M,d) is complete if every Cauchy sequence converges in M .
A Polish space is the topological space underlying a complete metric space with a countable

dense subset. Note that any discrete space is Polish.
An analytic set is the image of a Polish space under a continuous function between Polish

spaces. Note that any Polish space is an analytic set.
There are some basic facts about analytic sets that we use in this paper. Firstly, an

analytic set, as measurable space, has a denumerable base with disjoint elements. Secondly,
IfM1,M2 are analytic sets with Σ1,Σ2 the Borel algebras generated by their topologies,
then the product spaceM =M1 ×M2 with the Borel algebra Σ generated by the product
topology is an analytic set.

3 Continuous Markov processes

Based on an equivalence between the definitions of Harsanyi type spaces [11, 17] and labelled
Markov processes [18, 8, 4, 7] evidenced by Doberkat [6], we introduce the continuous Markov
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processes (CMPs), models of stochastic systems with continuous state space and continuous
time transitions. CMPs are defined for a fixed countable set A of transition labels which
represent types of interactions with the environment. If a ∈ A, m is the current state
of the system and N is a measurable set of states, the function θ(α)(m) is a measure on
the state space and θ(α)(m)(N) ∈ R+ represents the rate of an exponentially distributed
random variable that characterizes the duration of an α-transition from m to arbitrary n ∈ N .
Indeterminacy in such systems is resolved by races between events executing at different
rates.

I Definition 1 (Continuous Markov processes). Given an analytic set (M,Σ), where Σ is
the Borel algebra generated by the topology, an A-continuous Markov kernel is a tuple
M = (M,Σ, θ), where θ : A → JM → ∆(M,Σ)K. M is the support set of M denoted by
sup(M). If m ∈M , (M,m) is an A-continuous Markov process1.

In the rest of the paper we assume that the set of transition labels A is fixed. We denote
by M the class of A-continuous Markov kernels (CMKs) and useM,Mi,M′ to range over
M. We denote by P the set of A-CMPs and use P, Pi, P ′ to range over P.

The stochastic bisimulation for CMPs follows the line of the Larsen-Skou probabilistic
bisimulation [16, 7, 18].

I Definition 2 (Stochastic Bisimulation). Given M = (M,Σ, θ) ∈ M, a rate-bisimulation
relation onM is a relation R ⊆M ×M such that (m,n) ∈ R iff for any C ∈ Σ(R) and any
a ∈ A,

θ(a)(m)(C) = θ(a)(n)(C).

Two processes (M,m) and (M, n) are stochastic bisimilar, written m ∼M n, if they are
related by a rate-bisimulation relation.

Observe that, for anyM∈M there exist rate-bisimulation relations. For instance, the
identity of the elements of the support-set ofM is a rate-bisimulation relation. The stochastic
bisimulation of processes from different CMKs is defined by considering the disjoint union of
CMKs.

IfM = (M,Σ, θ),M′ = (M ′,Σ′, θ′) ∈M, thenM′′ = (M ′′,Σ′′, θ′′) ∈M is the disjoint
union ofM andM′ if M ′′ = M ]M ′, Σ′′ = Σ ] Σ′ and for any a ∈ A, N ∈ Σ and N ′ ∈ Σ′,

θ′′(a)(m)(N ]N ′) =
{
θ(a)(m)(N) if m ∈M
θ′(a)(m)(N ′) if m ∈M ′

We denoteM′′ byM]M′. If m ∈M and m′ ∈M ′, we say that (M,m) and (M′,m′) are
bisimilar written (M,m) ∼ (M′,m′) whenever m ∼M]M′ m′.

4 Continuous Markovian Logics

In this section we introduce the continuous Markovian logic (CML) for semantics based on
CMPs. In addition to the Boolean operators, this logic is endowed with stochastic modal
operators that approximate the rates of transitions. Thus, for a ∈ A and r ∈ Q+, Larφ
characterizes a CMP (M,m) such that the rate of the a-transition from m to the class of the

1 θ(a) is a measurable mapping between (M,Σ) and ∆(M,Σ). This is equivalent with the conditions on
the two-variable rate function used in [9] to define continuous Markov processes; for the proof of the
equivalence see, e.g. Proposition 2.9, of [6].



6 Continuous Markovian Logic

states characterized by φ is at least r; symmetrically, Ma
r φ is satisfied when the same rate is

at most r. In this respect, this logic is similar to probabilistic logics such as [1, 15, 12, 21, 10].
CMLs extends these logics to stochastic domains. The obvious structural similarities between
the probabilistic and the stochastic models are not preserved when we consider the logic.
By focusing on general measures instead of probabilistic measures in the definition of the
transition systems, many of the axioms of probabilistic logics, presented e.g., in [12, 21, 10],
are not sound for stochastic semantics. This is the case with ` Lar> or ` Larφ → ¬Las¬φ
for r + s < 1. Moreover, while in probabilistic settings the operators Lar and Ma

s are dual,
satisfying Ma

r φ = La1−r¬φ, they became independent in stochastic semantics. For this reason,
in the next section we study two CML logics with complete axiomatizations, L(A) involving
only the stochastic operators of type Lar , and L+(A) that comprises both Lar and Ma

s .

I Definition 3 (Syntax). Given a countable set A, the formulas of L(A) and L+(A) respec-
tively are introduced by the following grammars, for arbitrary a ∈ A and r ∈ Q+.

L(A) : φ := >| ¬φ | φ ∧ φ | Larφ,

L+(A) : φ := >| ¬φ | φ ∧ φ | Larφ | Ma
r φ.

In what follows we use the same set A of labels that we have considered in the previous
section in the definition of CMPs.

The semantics of L(A) and L+(A), called in this paper Markovian semantics, are defined
by the satisfiability relation for arbitrary A-CMPs (M,m) withM = (M,Σ, θ) ∈M, by:
M,m  > always,
M,m  ¬φ iff it is not the case thatM,m  φ,
M,m  φ ∧ ψ iffM,m  φ andM,m  ψ,
M,m  Larφ iff θ(a)(m)(JφKM) ≥ r,
M,m Ma

r φ iff θ(a)(m)(JφKM) ≤ r,
where JφKM = {m ∈M |M,m  φ}.

Notice that the semantics of Larφ and Ma
r φ are well defined only if JφKM is measurable.

This is guaranteed by the fact that θ(a) is a measurable mapping between (M,Σ) and
∆(M,Σ), as proved in the next lemma.

I Lemma 4. For any φ ∈ L+(A) and anyM = (M,Σ, θ) ∈M, JφKM ∈ Σ.

Proof. Induction on the structure of φ. The only nontrivial cases involve the stochastic
operators. For φ = Larψ, observe that

JLarψKM = (θ(a))−1({µ ∈ ∆(M,Σ)|µ(JψKM) ≥ r}).

From the inductive hypothesis, JψKM ∈ Σ, hence, {µ ∈ ∆(M,Σ)|µ(JψKM) ≥ r} is mea-
surable in ∆(M,Σ) and because θ(a) is a measurable mapping, we obtain that JLarψKM
is measurable. Similarly it can be proved for φ = Ma

r ψ, because the σ-algebra generated
by {µ ∈ ∆(M,Σ)|µ(JψKM) ≥ r} on ∆(M,Σ) coincides with the σ-algebra generated by
{µ ∈ ∆(M,Σ)|µ(JψKM) ≤ r}. J

When it is not the case thatM,m  φ, we writeM,m 6 φ.
We also consider ⊥ = ¬>. Notice that alwaysM,m 6 ⊥.
In L+(A) we can define a derived operator Earφ = Larφ ∧Ma

r φ with the semantics
M,m  Earφ iff θ(a)(m)(JφKM) = r.
A formula φ is satisfiable if there exists M = (M,Σ, θ) ∈ M and m ∈ M such that

M,m  φ. φ is valid, denoted by  φ, if ¬φ is not satisfiable.
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Notice that Earφ characterizes the process that can do an a-transition to the set of
processes satisfying φ with the rate r. So, in this case one can express the exact rate of the
transitions. This is always possible in probabilistic logic where Ma

r and Lar are dual operators
and consequently Ear is always definable. In the stochastic case Lar , Ma

r and Ear are mutually
independent. We chose not to study a Markovian logic that involves only the Ear operator
because this is not useful in applications where we do not know, in general, the exact rates
of the transitions. It is instead more useful to work with approximations such as Ma

r or Lar .

5 Complete axiomatizations

In this section we present two Hilbert-style axiomatizations, one for L(A) and one for
L+(A), and we prove that they are sound-complete against the Markovian semantics. Both
axiomatizations, as in the case of the axiomatization proposed in [21] for probabilistic systems,
contain infinitary rules that encode the Archimedean properties of Q+ ∪ {+∞}. However,
as it has been shown in [13] following the line of [12], a finitary axiomatic system can be
given by replacing the stochastic operators with some more complex operators. For our
purpose, which is reasoning on approximated properties of Markovian processes, a complete
axiomatization with simple axioms involving only the stochastic operators introduced before
(and the Archimedian rules) is more useful. This is because in real applications we expect to
use Ma

p/n and Lap/n for a fixed integer n (1/n is the modelling error). In this context, the
Archimedian rules will never be effectively used, but they will only guarantee that once we
have established that (M,m)  Lap/nφ ∧Ma

(p+1)/nφ, this remains true and converges when
we use better and better approximations of the model.

As usual, we say that a formula φ is provable, denoted by ` φ, if it can be proved from
the given axioms and rules. We say that φ is consistent, if φ→ ⊥ is not provable. Given a
set Φ of formulas, we say that Φ proves φ, Φ ` φ, if from the formulas of Φ and the axioms
one can prove φ. Φ is consistent if it is not the case that Φ ` ⊥. If Φ is finite we denote by∧

Φ =
∧
φ∈Φ

φ. For a sublanguage L ⊆ L+(A), we say that Φ is L-maximally consistent if Φ

is consistent and no formula of L can be added to it without making it inconsistent.

5.1 Axiomatization for L(A)

Table 1 contains a Hilbert-style axiomatization for L(A). The axioms and rules2 are given
for propositional variables φ, ψ ∈ L(A), for arbitrary a ∈ A and s, r ∈ Q+.

(A1): ` La0φ
(A2): ` Lar+sφ→ Larφ

(A3): ` Lar(φ ∧ ψ) ∧ Las(φ ∧ ¬ψ)→ Lar+sφ

(A4): ` ¬Lar(φ ∧ ψ) ∧ ¬Las(φ ∧ ¬ψ)→ ¬Lar+sφ
(R1): If ` φ→ ψ then ` Larφ→ Larψ

(R2): If ∀r < s,` φ→ Larψ then ` φ→ Lasψ

(R3): If ∀r > s,` φ→ Larψ then ` φ→ ⊥

Table 1 The axiomatic system of L(A)

2 These are considered in addition to the axiomatization of propositional logic.
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This axiomatic system has some similarities to the axiomatic system of probabilistic
logic proposed in [21] for Harsanyi type spaces. The main difference is that the axioms of
probabilistic logic ` Lar> and ` Larφ→ ¬Las¬φ for r+ s ≤ 1 are not sound for the Markovian
semantics and this changes the entire proof structure. We also have two Archimedean
properties reflected in (R2) and (R3); while the first allows us to argue on convergent
sequences of rationals, the second excludes the models with infinite rates.

I Theorem 5 (Soundness). The axiomatic system of L(A) is sound for the Markovian
semantics, i.e., for any φ ∈ L(A), if ` φ then  φ.

In what follows we prove the finite model property for L(A) using the filtration method
adapted for CMPs. This result will eventually establish the (weak) completeness of the
axiomatic system for the Markovian semantics, meaning that everything that is true for
all the models is also provable. Formally, for an arbitrary consistent formula ψ ∈ L(A),
we will construct a CMP (Mψ,Γ) where sup(Mψ) is a finite set of L(A)-consistent sets of
formulas. As usual with the filtration method, the key argument is the truth lemma: ψ ∈ Γ
iffMψ,Γ  ψ. A similar construction has been proposed in [21] for probabilistic logic, where
the finite model property derives from the fact that the number of rationals of type p

n , for a
fixed integer n, is finite within [0, 1]. The same property does not hold in our case, as the
focus is on [0,∞), and instead we need a more complicated construction.

Before proceeding with the construction, we fix some notations.
For n ∈ N, n 6= 0, let Qn = { pn : p ∈ N}. If S ⊆ Q is finite, the granularity of S, gr(S), is

the lowest common denominator of the elements of S.
The modal depth of φ ∈ L(A) is defined by md(>) = 0, md(¬φ) = md(φ), md(φ ∧ ψ) =
max(md(φ),md(ψ)) and md(Larφ) = md(φ) + 1.
The granularity of φ ∈ L is gr(φ) = gr(R), where R ⊆ Q+ is the set of indexes r of the
operators Lar present in φ; the upper bound of φ is max(φ) = max(R).
The actions of φ is the set act(φ) ⊆ A of indexes a ∈ A of the operators Lar present in φ.
For arbitrary n ∈ N and A ⊆ A, let Ln(A) be the sublanguage of L(A) that uses only modal
operators Lar with r ∈ Qn and a ∈ A. For Λ ⊆ L(A), let [Λ]n = {φ ∈ Ln(A) : Λ ` φ}.

Consider a consistent formula ψ ∈ L(A) with gr(ψ) = n and act(ψ) = A.
Let L[ψ] = {φ ∈ Ln(A) | max(φ) ≤ max(ψ),md(φ) ≤ md(ψ)}.

In what follows we constructMψ ∈M such that each Γ ∈ sup(Mψ) is a consistent set of
formulas that contains an L[ψ]-maximally consistent set of formulas and each L[ψ]-maximally
consistent set is contained in some Γ ∈ sup(Mψ). And we will prove that for φ ∈ L[ψ], φ ∈ Γ
iffMψ,Γ  φ.

Let Ω[ψ] be the set of L[ψ]-maximally consistent sets of formulas. Ω[ψ] is finite and any
Λ ∈ Ω[ψ] contains finitely many nontrivial formulas3; in the rest of this construction we
only count non-trivial formulas while ignoring the rest and when we use

∧
Λ we refer to the

conjunction of the nontrivial ones.
For each Λ ∈ Ω[ψ], such that {φ1, ..., φi} ⊆ Λ is its set of its non-trivial formulas, we

construct Λ+ ⊇ [Λ]n with the property that ∀φ ∈ Λ and a ∈ A there exists ¬Larφ ∈ Λ+.
The construction step [φ1 versus Λ:]

(R3) guarantees that ∃r ∈ Qn s.t. [Λ]n ∪ {¬Larφ1} is consistent (suppose that this is not
the case, then `

∧
Λ → Larφ1 for all r ∈ Qn implying that

∧
Λ inconsistent - impossible).

3 By nontrivial formulas we mean the formulas that are not obtained from more basic consistent ones by
boolean derivations.
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Let ya1 = min{s ∈ Qn : [Λ]n ∪ {¬Lasφ1} is consistent} and xa1 = max{s ∈ Qn : Lasφ1 ∈ [Λ]n}
((R3) guarantees the existence of max, because otherwise `

∧
Λ→ Larφ1 for all r implying

∧
Λ

inconsistent - impossible). (R2) implies that ∃r ∈ Q\Qn s.t., xa1 < r < ya1 and {¬Larφ1}∪[Λ]n
is consistent (otherwise, `

∧
Λ → Larφ1 for all r < ya1 and due to (R2), `

∧
Λ → Laya1φ1 -

contradiction with the consistency of Λ). Obviously, r 6∈ Qn. Let n1 = gran{1/n, r}. Let
sa1 = min{s ∈ Qn1 : [Λ]n1 ∪ {¬Lasφ1} is consistent}, Λa1 = Λ ∪ {¬Lasa1φ1} and Λ1 =

⋃
a∈A

Λa1 .

The construction step [φ2 versus Λ1:]
As before, let ya2 = min{s ∈ Qn1 : [Λ1]n1 ∪ {¬Lasφ2} is consistent} and xa2 = max{s ∈
Qn1 : Lasφ2 ∈ [Λ1]n1}. There exists r ∈ Q \ Qn1 s.t., xa2 < r < ya2 and {¬Larφ2} ∪ [Λ1]n1 is
consistent. Let n2 = gran{1/n1, r}. Let sa2 = min{s ∈ Qn2 : [Λ]n2 ∪ {¬Lasφ2} is consistent},
Λa2 = Λ1 ∪ {¬Lasa2φ2} and Λ2 =

⋃
a∈A

Λa2 .

We repeat this construction step for [φ3 versus Λ2],..,[φi versus Λi−1] and in a finite
number of steps we eventually obtain Λ ⊆ Λ1 ⊆ ... ⊆ Λi, where Λi is a consistent set
containing a finite set of nontrivial formulas. Let nΛ = gran{1/n1, .., 1/ni}. We make this
construction for all Λ ∈ Ω[ψ]. Let p = gran{1/nΛ : Λ ∈ Ω[ψ]}. Notice that p > n. Let
Λ+ = [Λi]p and Ω+[ψ] = {Λ+ : Λ ∈ Ω[ψ]}.

I Remark. Any consistent formula φ ∈ L[ψ] is an element of a set Λ+ ∈ Ω+[ψ]. For each
Λ ∈ Ω[ψ], each φ ∈ Λ and a ∈ A, there exist s, t ∈ Qp, s < t, such that Lasφ,¬Lat φ ∈ Λ+.
Moreover, for any Λ+ there exists a formula ρ such that φ ∈ Λ+ iff ` ρ→ φ.

Let Ωp be the set of Lp(A)-maximally consistent sets of formulas. We fix an injective
function4 f : Ω+[ψ] → Ωp such that for any Λ+ ∈ Ω+[ψ], Λ+ ⊆ f(Λ+). We denote by
Ωp[ψ] = f(Ω+[ψ]). For φ ∈ L[ψ], let JφK = {Γ ∈ Ωp[ψ] : φ ∈ Γ}. Anticipating the further
construction, we will use Ωp[ψ] as the support-set forMψ. For this reason we establish some
properties for this set.

I Lemma 6. 1. Ωp[ψ] is finite.
2. 2Ωp[ψ] = {JφK : φ ∈ L[ψ]}.
3. For any φ1, φ2 ∈ L[ψ], ` φ1 → φ2 iff Jφ1K ⊆ Jφ2K.
4. For any Γ ∈ Ωp[ψ], φ ∈ L[ψ] and a ∈ A there exist x = max{r ∈ Qp : Larφ ∈ Γ},

y = min{r ∈ Qp : ¬Larφ ∈ Γ} and y = x+ 1/p.

Let Ω be the set of L(A)-maximally consistent sets of formulas. We fix an injection
g : Ωp → Ω such that for any Γ ∈ Ωp, Γ ⊆ π(Γ). We denote by Γ∞ = g(Γ), for any Γ ∈ Ωp[ψ].

I Lemma 7. For any Γ ∈ Ωp[ψ], φ ∈ L[ψ] and a ∈ A, there exists

z = sup{r ∈ Q : Larφ ∈ Γ∞} = inf{r ∈ Q : ¬Larφ ∈ Γ∞} and x ≤ z < y.

We denote z by aΓ
φ and now we can defineMψ.

I Lemma 8. If θψ : A → [Ωp[ψ] → ∆(Ωp[ψ], 2Ωp[ψ])] is defined for arbitrary a ∈ A,
Γ ∈ Ωq[ψ] and φ ∈ L[ψ] by θψ(a)(Γ)(JφK) = aΓ

φ, thenMψ = (Ωp[ψ], 2Ωp[ψ], θψ) ∈M.

Now we can prove the Truth Lemma.

I Lemma 9 (Truth Lemma). If φ ∈ L[ψ], then [Mψ,Γ  φ iff φ ∈ Γ].

4 This function is not unique.
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Proof. Induction on the structure of φ. The only nontrivial case is φ = Larφ
′.

(=⇒) Suppose thatMψ,Γ  φ and φ 6∈ Γ. Hence ¬φ ∈ Γ. Let y = min{r ∈ Qp : ¬Larφ ∈
Γ}. Then, from ¬Larφ′ ∈ Γ, we obtain r ≥ y. But Mψ,Γ  Larφ

′ is equivalent with
θψ(a)(Γ)(Jφ′K) ≥ r, i.e. aΓ

φ′ ≥ r. On the other hand, from Lemma 6, aΓ
φ′ < y - contradiction.

(⇐=) If Larφ′ ∈ Γ, then r ≤ aΓ
φ and r ≤ θψ(a)(Γ)(JφK). Hence,Mψ,Γ  Larφ. J

The previous lemma implies the small model property for our logic.

I Theorem 10 (Small model property). For any L(A)-consistent formula φ, there exists
M ∈ M with finite support of cardinality bound by the structure of φ, and there exists
m ∈ sup(M) such thatM,m  φ.

The small model property proves the (weak) completeness of the axiomatic system.

I Theorem 11 (Completeness). The axiomatic system of L(A) is complete with respect to
the Markovian semantics, i.e. if  ψ, then ` ψ.

Proof. We have that [ ψ implies ` ψ] is equivalent with [ 6` ψ implies 6 ψ], that is
equivalent with [the consistency of ¬ψ implies the existence of a model (M,m) for ψ] and
this is guaranteed by the finite model property. J

5.2 Axiomatization for L+(A)
Table 2 contains a Hilbert-style axiomatization for L+(A).

(B1): ` La0φ
(B2): ` Lar+sφ→ ¬Ma

r φ, s > 0
(B3): ` ¬Larφ→Ma

r φ

(B4): ` ¬Lar(φ ∧ ψ) ∧ ¬Las(φ ∧ ¬ψ)→ ¬Lar+sφ
(B5): ` ¬Ma

r (φ ∧ ψ) ∧ ¬Ma
s (φ ∧ ¬ψ)→ ¬Ma

r+sφ

(S1): If ` φ→ ψ then ` Larφ→ Larψ

(S2): If ∀r < s,` φ→ Larψ then ` φ→ Lasψ

(S3): If ∀r > s,` φ→Ma
r ψ then ` φ→Ma

s ψ

(S4): If ∀r > s,` φ→ Larψ then ` φ→ ⊥

Table 2 The axiomatic system of L+(A)

Notice the differences between these axioms and the axioms in Table 1. First of all the
axiom (A2) had to be enforced by (B2) and (B3) which depict the connection between the two
stochastic operators. In the probabilistic case these relations are encoded by the duality rule
Ma
r φ = La1−r¬φ and by the axiom ` Larφ→ ¬Las¬φ for r + s < 1; these two are not sound

for stochastic models. Rule (A3) has been itself enforced by (B5). We also have an extra
Archimedian rule for Ma

r . We prove below that all the theorems of L(A) are also theorems
of L+(A) and we state some theorems of L+(A) that are central for the completeness proof.

I Lemma 12. 1. ` Lar+sφ→ Larφ, 2.`Ma
r φ→Ma

r+sφ,
3. ` Lar(φ ∧ ψ) ∧ Las(φ ∧ ¬ψ)→ Lar+sφ, 4. `Ma

r (φ ∧ ψ) ∧Ma
s (φ ∧ ¬ψ)→Ma

r+sφ,
5. ` ¬Ma

r φ→ Larφ, 6. `Ma
r φ→ ¬Lar+sφ, s > 0,

7. If ` φ→ ψ, then `Ma
r ψ →Ma

r φ.

I Theorem 13 (Soundness). The axiomatic system of L+(A) is sound for the Markovian
semantics, i.e., for any φ ∈ L+(A), if ` φ then  φ.
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The finite model property for L+(A) is proved, similarly to the case of L(A), by using
the filtration method. In what follows we will not reproduce the entire construction already
presented for L(A), but we only emphasize the major differences.

We keep the notations introduced before with the only differences that for an arbitrary
φ ∈ L+(A), the definition of the modal depth of φ also includes md(Ma

r ψ) = md(ψ) + 1 and
gr(φ), max(φ) and act(φ) take into account, in addition, the indexes of the operators of
type Ma

r that appear in φ. With these modifications we define L+
n (A) for any integer n and

A ⊆ A as before and for Λ ⊆ L+(A), [Λ]n = {φ ∈ L+
n (A) : Λ ` φ} .

Now, we consider a consistent formula ψ ∈ L+(A) with gr(ψ) = n and act(ψ) = A and
we define L+[ψ] = {φ ∈ L+

n (A) | max(φ) ≤ max(ψ),md(φ) ≤ md(ψ)}. For Ω[ψ] the set of
L+[ψ]-maximally consistent sets of formulas we reproduce identically the construction done
in the previous subsection for L(A).

The first important difference with respect to the previous case appears due to (B2): for
each Λ ∈ Ω[ψ], φ ∈ Λ and a ∈ A, there exist s, t ∈ Qp, s < t, such that Lasφ,Ma

r φ ∈ Λ+.
Secondly, for any Γ ∈ Ωp[ψ], φ ∈ L+[ψ] and a ∈ A, there exist x = max{r ∈ Qp : ¬Ma

r φ ∈ Γ},
y = min{r ∈ Qp : Ma

r φ ∈ Γ} and y = x+ 1/p. In effect, in the correspondent of Lemma 7,
one can prove that there exists z = sup{r ∈ Q : Larφ ∈ Γ∞} = inf{r ∈ Q : ¬Larφ ∈ Γ∞} =
inf{r ∈ Q : Ma

r φ ∈ Γ∞} = sup{r ∈ Q : ¬Ma
r φ ∈ Γ∞}.

As before, we denote z by aΓ
φ and we proceed with the definition of the modelMψ.

I Lemma 14. If θψ : A → [Ωp[ψ] → ∆(Ωp[ψ], 2Ωp[ψ])] is defined for arbitrary a ∈ A,
Γ ∈ Ωq[ψ] and φ ∈ L+[ψ] by θψ(a)(Γ)(JφK) = aΓ

φ, thenMψ = (Ωp[ψ], 2Ωp[ψ], θψ) ∈M.

This last result allows us to prove the Truth Lemma for L+(A).

I Lemma 15 (Truth Lemma). If φ ∈ L+[ψ], then [Mψ,Γ  φ iff φ ∈ Γ].

With respect to the proof of Lemma 9, Lemma 15 requires the case φ = Ma
r φ
′, which is

proved symmetrically with the case φ = Larφ
′ in Lemma 9.

As before, the truth lemma implies the finite model property and the completeness
theorem for L+(A) and Markovian semantics.

I Theorem 16 (Small model property). For any L+(A)-consistent formula φ, there exists
M ∈ M with finite support of cardinality bound by the structure of φ, and there exists
m ∈ sup(M) such thatM,m  φ.

I Theorem 17 (Completeness). The axiomatic system of L+(A) is complete with respect to
the Markovian semantics, i.e. if  ψ, then ` ψ.

6 From bisimulation to the metric space of logical formulas

For the beginning, we state that the logical equivalences induced by L(A) and by L+(A) on
the class of CMPs coincide with stochastic bisimulation. The proofs follow closely the proof
of the corresponding result for probabilistic systems and consists in showing that the negation
free-fragment of L(A) characterizes stochastic bisimulation while the negation and Ma

r do
not differentiate bisimilar processes. Being the similarity of the proofs with the probabilistic
case we only sketch them in the appendix. For the detailed proof in the probabilistic case,
the reader is referred to [7, 9, 18].

I Theorem 18 (Logical characterization of stochastic bisimulation). LetM = (M,Σ, τ),M′ =
(M ′,Σ′, τ ′) ∈M, m ∈M and m′ ∈M ′. The following assertions are equivalent.
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1. (M,m) ∼ (M′,m′);
2. For any φ ∈ L(A),M,m  φ iffM′,m′  φ;
3. For any φ ∈ L+(A),M,m  φ iffM′,m′  φ.

One of the main motivation for studying quantitative logics for probabilistic and stochastic
processes was, since the first papers on this subject [16, 15], the characterization of stochas-
tic/probabilistic bisimulation. In the context of Theorem 18, one can turn the bisimulation
question into a series of model-checking problems. But the concept of stochastic/probabilistic
bisimulation is a very strict concept: it only verifies whether two processes have identical
behaviours. In applications we need instead to know whether two processes that may differ
by only a small amount in real-valued parameters (rates or probabilities) are behaving in
a similar way. To solve this problem a class of pseudometrics have been proposed in the
literature [5, 18], to measure how similar two processes are in terms of stochastic/probabilistic
behaviour.

Because these pseudometrics are quantitative extensions of bisimulation, they can be
defined relying on the quantitative logics. Thus, for a class P of stochastic or probabilistic
processes and for a quantitative logic L that characterizes the bisimulation of processes, the
satisfiability relation : P × L → {0, 1} can be extended to a function d : P × L → [0, 1]
which measures the "degree of satisfiability", as shown in, e.g., [5, 18].

An example of such a metric for our case, where P is the set of CMPs and L = L+(A)
(or L = L(A)), is given by d : P× L → [0, 1] defined below.

d((M,m),>) = 0,
d((M,m),¬φ) = 1− d((M,m), φ),
d((M,m), φ ∧ ψ) = max{d((M,m), φ), d((M,m), ψ)},
d((M,m), Larφ) = 〈r, θ(a)(m)(JφK)〉,
d((M,m),Ma

r φ) = 〈θ(a)(m)(JφK), r〉,
where for arbitrary a, b ∈ R+, 〈a, b〉 = (a− b)/a if a(a− b) > 0 and 〈a, b〉 = 0 else.
The following lemma shows that, indeed, d characterizes stochastic bisimulation.

I Lemma 19. If (M,m), (M′,m′) ∈ P, then

(M,m) ∼ (M′,m′) iff [∀φ ∈ L, d((M,m), φ) = d((M′,m′), φ)].

Proof. (=⇒) Induction on φ. The Boolean cases are trivial and the cases φ = Larψ and
φ = Ma

r ψ derive from the fact that θ(a)(m)(JφK) = θ′(a)(m′)(JφK).
(⇐=) For an arbitrary φ ∈ L, ∀r ∈ Q, d((M,m), Larφ) = d((M′,m′), Larφ); and for r big
enough d((M,m), Larφ) = 1 − θ(a)(m)(JφK)/r, d((M′,m′), Larφ) = 1 − θ′(a)(m′)(JφK)/r.
Hence, θ(a)(m)(JφK) = θ′(a)(m′)(JφK) which implies (M,m) ∼ (M′,m′). J

There exist a few such metrics defined in literature [5, 18], mainly for probabilistic systems,
that take into account various intuitions about how one can quantify the satisfiability relation.
However, any such function d : P× L → [0, 1], if it characterizes bisimulation in the sense of
Lemma 19, induces a distance between two stochastic processes, D : P×P→ [0, 1] by

D(P, P ′) = sup{|d(P, φ)− d(P ′, φ)|, φ ∈ L}, for arbitrary P, P ′ ∈ P.

An immediate consequence of Lemma 19 (or of a similar result) is the next lemma.

I Lemma 20. D : P×P→ [0, 1] defined before is a pseudometric such that

D(P, P ′) = 0 iff P ∼ P ′.
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Similarly, one can use d to define a pseudometric d : L × L → [0, 1] over the space of
logical formulas by

d(φ, ψ) = sup{|d(P, φ)− d(P,ψ)|, P ∈ P}, for arbitrary φ, ψ ∈ L.

I Lemma 21. d : L × L → [0, 1] defined before is a pseudometric and

d(φ, ψ) = d(¬φ,¬ψ).

The utility of d is stated by the robustness theorem.

I Theorem 22 (Strong Robustness). For arbitrary φ, ψ ∈ L and P ∈ P,

d(P,ψ) ≤ d(P, φ) + d(φ, ψ).

Proof. The inequality is equivalent to d(P,ψ)− d(P, φ) ≤ d(φ, ψ), which derives from the
definition of d. J

Similar constructions can be done for any class of stochastic or probabilistic models for
which it has been defined a correspondent logic that characterizes bisimulation. But in spite
of the obvious utility of the robustness theorem, in most of the cases such a result is not
computable due to the definition of d that involves the quantification over the entire class of
continuous Markov processes.

This is exactly where the sound-complete axiomatizations of L(A) and L+(A) for the
Markovian semantics and the finite model properties play their role. In what follows, we use
the construction of the small model for an L-consistent formula presented in the previous
section5 to effectively compute an approximation of d within a given error ε > 0. Bellow we
reuse the notations used in section 5.

Let Ω be the set of the L-maximally consistent sets of formulas. For arbitrary Γ∞ ∈ Ω,
a ∈ A and φ ∈ L, let

aΓ∞
φ = sup{r ∈ Q : Larφ ∈ Γ∞} = inf{r ∈ Q : ¬Larφ ∈ Γ∞} =

inf{r ∈ Q : Ma
r φ ∈ Γ∞} = sup{r ∈ Q : ¬Ma

r φ ∈ Γ∞}.

The existence of these inf and sup and their equalities can be proved as in Lemma 6 (4).

I Lemma 23 (Extended Truth Lemma). If θ : A → [Ω→ ∆(Ω, 2Ω)] is defined for arbitrary
a ∈ A, Γ∞ ∈ Ω and φ ∈ L by θ(a)(Γ∞)(JφK) = aΓ∞

φ , thenML = (Ω, 2Ω, θ) ∈M. Moreover,
for arbitrary φ ∈ L,

ML,Γ∞  φ iff φ ∈ Γ∞.

The proof of this lemma is the sum of the proofs of the lemmas 8, 9, 14 and 15.
The next lemma states that d can be characterized by only using the processes of

ML. Because these processes are L-maximally consistent sets of formulas, the next lemma
is basically showing that d is a distance depending directly on provability. From the
computability point of view, the reduction of the space of quantification is not simplifying
our problem as Ω is itself infinite.

I Lemma 24. For arbitrary φ, ψ ∈ L,

d(φ, ψ) = sup{|d((ML,Γ∞), φ)− d((ML,Γ∞), ψ)|,Γ∞ ∈ Ω}.

5 The results presented bellow are true for both L = L(A) and L = L+(A).
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Now we try to reduce the quantification space even more, to the domain of a finite model.
For an arbitrary consistent formula ψ ∈ L, letMψ = (Ωp[ψ], 2Ωp[ψ], θψ) ∈M be the model
of ψ constructed in the previous section; we call p the parameter of Mψ.
Let d̃ : L × L → [0, 1] be defined as follows.

d̃(φ, ψ) = max{|d((Mφ∧ψ,Γ), φ)−d((Mφ∧ψ,Γ), ψ)|,Γ ∈ Ωp[φ∧ψ]} if φ∧ψ is consistent,
d̃(φ, ψ) = max{|d((M¬(φ∧ψ),Γ), φ)− d((M¬(φ∧ψ),Γ), ψ)|,Γ ∈ Ωp[¬(φ ∧ ψ)]} else.

I Lemma 25. For arbitrary φ, ψ ∈ L,

d(φ, ψ) ≤ d̃(φ, ψ) + 2/p.

This last result finally allows us to prove a weaker version of the robustness theorem
which evaluates d((M,m), ψ) from d((M,m), φ), based on d̃(φ, ψ) and a given error.

I Theorem 26 (Weak Robustness). For arbitrary φ, ψ ∈ L and P ∈ P,

d(P,ψ) ≤ d(P, φ) + d̃(φ, ψ) + 1/p,

where p is the parameter ofMφ∧ψ if φ ∧ ψ is consistent, or ofM¬(φ∧ψ) otherwise.

BecauseMφ∧ψ (orM¬(φ∧ψ)) is finite, d̃(φ, ψ) can be computed and the error 1/p can
also be controlled while constructingMφ∧ψ. Hence, we can evaluate d(P, φ) from d(P,ψ).
This is obviously useful when P is infinite or very large and it is expensive to repeatedly
evaluate d(P, φ) for various φ. Instead, our theorem allows us to evaluate d(P,ψ) from d(P, φ)
that we can get, for instance, using statistical model checking techniques.

7 Conclusions and future works

In this paper we introduce Continuous Markovian Logic, a multimodal logic designed to
specify quantitative and qualitative properties of Markov processes with continuous state-
space and continuous-time transitions. CML is endowed with operators that approximate
the rates of the labelled transition of CMPs and allows us to approximate properties. This
logic, as in the probabilistic case, characterizes the stochastic bisimulation of CMPs. We
present two sound-complete Hilbert-style axiomatizations: for CMP and for CMP without
Ma
r -operators. These axiomatic systems are significantly different from the probabilistic case

and from each other. The two completeness proofs presented in the paper relay on the finite
model properties that we prove for both CML and its restricted fragment. The constructions
of the finite models uses the filtration method of modal logics in the stochastic settings,
where a series of original problems have been solved. The small model construction and the
complete axiomatization allows us to approach the problems of bisimulation-distances, that
in the probabilistic cases were only approached semantically, from a syntactic perspective. In
effect we can define a distance between logical formulas that allows us to prove the robustness
theorems.

This paper opens a series of interesting research questions regarding the relation between
satisfiability, provability and metric semantics. There are many open questions related to the
definition of d and the structure of the metric space of formulas. One of the problems, that
we postpone for future work, is finding a classification of the functions d to reflect properties
of d. For instance, we have a partial result showing that if d is such that [d(P, φ) = 0 iff
P  φ]6, then d characterizes the logical equivalence, i.e., [d(φ, ψ) = 0 iff  φ↔ ψ]. There

6 In general, if the distance d satisfies a rule of type d(P,¬φ) = 1− d(P, φ), as the metric which we use as
an example in this paper does, it does not enjoy this property.
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exist, however, distances enjoying even stronger properties such as [ φ → ψ iff ∀P ∈ P,
d(P,ψ) ≤ d(P, φ)]. Each of these metrics organizes the set of logical formulas as a metric
space, in the way we have shown in our paper, and in each case the metric space has
different properties. The complete axiomatization is probably the key for understanding the
relationship between these structures.
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Appendix

In this appendix we have collected the proofs of the major results and the detailed discussions
of the examples presented in the paper.

Lemma 6. The existence of x and y derives from the construction of Ωp[ψ] and the Rules
(R2), (R3).
Because Γ is consistent and Lαxφ,¬Lαyφ ∈ Γ, x 6= y. If x > y, Lαxφ ∈ Γ entails (Axiom (A2))
Lαyφ ∈ Γ, contradicting the consistency of Γ.
Hence, x < y. If x + 1/p < y, then Lαx+1/pφ 6∈ Γ (because x < x + 1/p ∈ Qq and Γ is
Lp-maximally consistent), i.e. ¬Lαx+1/pφ ∈ Γ implying that x+ 1/p ≥ y - contradiction. J

Lemma 7. As before, the existence of sup and inf is guaranteed by the construction and the
Rules (R2) and (R3).

Let x∞ = sup{r ∈ Q : Larφ ∈ Γ∞} and y∞ = inf{r ∈ Q : ¬Larφ ∈ Γ∞}. Suppose that
x∞ < y∞. Then there exists r ∈ Q such that x∞ < r < y∞. This implies that ¬Larφ ∈ Γ∞
(from the definition of x∞) and Larφ ∈ Γ∞ (from the definition of y∞) - impossible because
Γ∞ is consistent.

Suppose that x∞ > y∞. Then there exists r ∈ Q such that x∞ > r > y∞. As Γ∞ is
maximally consistent we have either Larφ ∈ Γ∞ or ¬Larφ ∈ Γ∞. The first case contradicts
the definition of x∞ while the second the definition of y∞.

Obviously, x ≤ z ≤ y. We cannot have z = y because else Lazφ,¬Lazφ ∈ Γ contradicting
the consistency of Γ. J

Lemma 8. This result is a direct consequence of the construction ofMψ. First notice that
because the space is discrete, is Polish, hence analytic set.

The central problem is to prove that for arbitrary Γ ∈ Ωp[ψ] and a ∈ A, the function
θψ(a)(Γ) : 2Ωp[ψ] → R+ is well defined and a measure on (Ωp[ψ], 2Ωp[ψ]). Further, because
the space is discrete with finite support, we obtain that θψ(a) ∈ JΩp[ψ]→ ∆(Ωp[ψ], 2Ωp[ψ])K
and conclude the proof.

θψ(a)(Γ) is well defined: suppose that for φ1, φ2 ∈ L[ψ] we have Jφ1K = Jφ2K. Then, from
Lemma 6, ` φ1 ↔ φ2 and from Rule (R1) ` Larφ1 ↔ Larφ2. This entails aΓ

φ1
= aΓ

φ2
and

guarantees that θψ(a)(Γ) is well defined.
Now we prove that θψ(a)(Γ) is a measure.
For showing θψ(a)(Γ)(∅) = 0, we show that for any r > 0, ` ¬Lar⊥. This is sufficient,

as Axiom (A1) guarantees that ` La0⊥ and J⊥K = ∅. Suppose that there exists r > 0 such
that Lar⊥ is consistent. Let ε ∈ (0, r) ∩Q. Then Axiom (A2) gives ` Lar⊥ → Laε⊥. Hence,
` Lar⊥ → (Lar(⊥ ∧ ⊥) ∧ Laε (⊥ ∧ ¬⊥)) and applying the Axiom (A3), ` Lar⊥ → Lar+ε⊥.
Repeating this argument, we can prove that ` Lar⊥ → Las⊥ for any s and Rule (R3) confirms
the inconsistency of Lar⊥.

We show now that if A,B ∈ 2Ωp[ψ] with A ∩B = ∅, then θψ(a)(Γ)(A) + θψ(a)(Γ)(B) =
θψ(a)(Γ)(A ∪ B). Let A = Jφ1K, B = Jφ2K with φ1, φ2 ∈ L[ψ] and ` φ1 → ¬φ2. Let
x1 = θψ(a)(Γ)(A), x2 = θψ(a)(Γ)(B) and x = θψ(a)(Γ)(A ∪B). We prove that x1 + x2 = x.

Suppose that x1 + x2 < x. Then, there exist ε1, ε2 ∈ Q+ such that x′1 + x′2 < x, where
x′i = xi + εi for i = 1, 2. But this implies that Lax′

i
φi 6∈ Γ∞ (from the definition of xi), hence
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¬Lax′
i
φi ∈ Γ∞. Further, using Axiom (A4), we obtain ¬Lax′1+x′2

(φ1 ∨ φ2) ∈ Γ∞, implying
(from the definition of x) that x′1 + x′2 ≥ x - contradiction.

Suppose that x1 + x2 > x. Then, there exist ε1, ε2 ∈ Q+ such that x′′1 + x′′2 > x, where
x′′i = xi − εi for i = 1, 2. But this implies (from the definition of xi) that Lax′′

i
φi ∈ Γ∞.

Further, Axiom (A3) gives Lax′′1 +x′′2
(φ1 ∨ φ2) ∈ Γ∞, i.e. x′′1 + x′′2 ≤ x - contradiction.

J

Theorem 18. The fact that bisimilar processes satisfy the same formulas can be proved by
a trivial induction on the structure of the logical formula.

Further we prove that the logical equivalence induced by the negation-free fragment
L∗(A) of L(A) characterizes completely the stochastic bisimulation of CMPs. For simplicity,
consider for arbitrary A-CMPsM = (M,Σ, τ),M′ = (M ′,Σ′, τ ′) and m ∈M , m′ ∈M ′ the
relation ≈ defined by (M,m) ≈ (M′,m′) iff [for any φ ∈ L∗(A),M,m  φ iffM′,m′  φ].
We will show that if (M,m) ≈ (M′,m′), then (M,m) ∼ (M′,m′). For this, we show that ≈
is a rate-bisimulation.

Before starting this proof, we introduce some additional concepts and present some results
that are needed for our proof.

Given a set X, a family of subsets Π ⊂ 2X closed under finite intersection is called
π-system. A family of subsets Λ ⊂ 2X is a λ-system if contains X and is closed under
complementation and countable union of pairwise disjoint sets.
[Dynkin’s λ− π theorem]. If Π is a π-system and Λ is a λ-system, then Π ⊂ Λ implies
Π ⊆ Λ, where Π is the σ-algebra generated by Π.

This theorem allows us to prove the next lemma.
[Lemma A.] Suppose that Π ⊆ 2X is a π-system with X ∈ Π and µ, ν are two measures on
(X,Π). If µ and ν agree on all the sets in Π, then they agree on Π.

We also present two more lemmas (see, e.g., [18] Section 7.7).
[Lemma B.] Let (M,Σ) be an analytic space and let Σ0 be a countably generated sub-σ-
algebra of Σ which separates points in M , i.e., for any m,n ∈M , m 6= n, there exists S ∈ Σ0
such that m ∈ S 63 n. Then Σ0 = Σ.
[Lemma C.] Let (M,Σ) be an analytic space and let ≡ be an equivalence relation on M . If
there exists a sequence f1, f2, ... of real-valued Borel functions on M such that m ≡ n iff for
all i, fi(m) = fi(n), then (M≡,Σ≡) is an analytic space.

Now we are ready to prove that ≈ is a rate-bisimulation. We introduce the concept of
zigzag morphism for CMPs, similar to [7, 18], which is a functional analogue of the concept
of bisimulation and will be the cornerstone of the completeness proof.

I Definition 27 (Zigzag morphism). A function f fromM = (M,Σ, θ) toM′ = (M ′,Σ′, θ′)
is a zigzag morphism if it is surjective, measurable and for all α ∈ A, m ∈M and S′ ∈ Σ′,

θ(α)(m)(f−1(S′)) = θ′(α)(f(m))(S′).

Notice that ≈ is an equivalence relation, hence, for a given (M,Σ) we can consider the
quotient (M≈,Σ≈) constructed as follows. M≈ is the set of all equivalence classes of M ;
there exists a projection π : M → M≈ which maps each element to its equivalence class.
π determines a σ-algebra Σ≈ on M≈ by S ∈ Σ≈ iff π−1(S) ∈ Σ. We call π the canonical
projection from (M,Σ) into (M≈,Σ≈).

For the beginning we show that (M≈,Σ≈) is an analytic space. Let L∗(A) = {φi|i ∈ N}.
Because JφiKM is measurable, the characteristic functions 1φi : M → {0, 1} are measurable



18 Continuous Markovian Logic

and m ≈ n iff [∀i ∈ N, 1φi(m) = 1φi(n)]. Lemma C proves further that (M≈,Σ≈) is an
analytic space.

Let B = {π(JφiKM|i ∈ N}. We show that B = Σ≈. Obviously, B ⊆ Σ≈, because for any
π(JφiKM) ∈ B, π−1(π(JφiKM)) ∈ Σ. Notice that B separates points in M≈: let C,D ∈M≈,
C 6= D and let m ∈ π−1(C), n ∈ π−1(D); because m 6≈ n, there exists φ ∈ L∗(A) such that
m ∈ JφKM 63 n. Hence, we can apply Lemma B and we obtain B = Σ≈.

Now we define θ≈ such that π is a zigzag. Notice first that π is measurable and surjective
by definition. For each C ∈ Σ≈ and α ∈ A, let θ≈(α)(m≈)(C) = θ(α)(m)(π−1(C)).

This definition is correct: let m,n ∈ m≈, we prove that θ(α)(m) and θ(α)(n) agree on
Σ≈. We show first that they agree on JφKM ∈ B. Suppose that we have θ(α)(m)(JφKM) <
r < θ(α)(JφKM). Then,M,m  ¬Lαr φ whileM, n  Lαr φ - impossible. Because B is closed
under finite intersection (JφKM ∩ JψKM = Jφ ∧ ψKM) and M = J>KM ∈ B, we apply Lemma
A and obtain that θ(α)(m) and θ(α)(n) agree on Σ≈.

Now we only need to prove that for any α ∈ A, θ≈(α) is measurable. Let C ∈ Σ≈ and A
a Borel set of R+. We have

(θ≈)−1({µ ∈ ∆(M≈,Σ≈)|µ(B) ∈ A}) = π((θ(α))−1({ν ∈ ∆(M,Σ)|ν(π−1(B)) ∈ A})).

But {ν ∈ ∆(M,Σ)|ν(π−1(B)) ∈ A} is measurable in ∆(M,Σ) and because θ(α) is measurable
we obtain that (θ(α))−1({ν ∈ ∆(M,Σ)|ν(π−1(B)) ∈ A}) ∈ Σ implying π((θ(α))−1({ν ∈
∆(M,Σ)|ν(π−1(B)) ∈ A})) ∈ Σ≈. J

Lemma 21. It is sufficient to show that it satisfies the triangle inequality. We have
sup{|d((Ω,Γ), φ) − d((Ω,Γ), ψ)|} + sup{|d((Ω,Γ), ψ) − d((Ω,Γ), ρ)|} ≥ sup{|d((Ω,Γ), φ) −
d((Ω,Γ), ψ)|+ |d((Ω,Γ), ψ)− d((Ω,Γ), ρ)|} ≥ sup{|d((Ω,Γ), φ)− d((Ω,Γ), ρ)|}.

J

Lemma 24. Any (M,m) ∈M satisfies a maximally-consistent set of formulas, hence there
exists Γ∞ ∈ Ω such that (M,m) ∼ (ML,Γ∞), i.e., for any φ ∈ L, d((M,m), φ) =
d((ML,Γ∞), φ). J

Lemma 25. To prove the inequality, we return to the notations of lemmas 6 and 7. We have
x, y ∈ Qp, y = x+ 1/p and x ≤ z < y. This implies that for any φ ∈ L[ψ], |d((ML,Γ∞), φ)−
d((Mψ,Γ), φ)| ≤ 1/p. Consequently, for arbitrary φ, ψ ∈ L, |d((ML,Γ∞), φ)−d((ML,Γ∞), ψ)| ≤
|d((Mφ∧ψ,Γ), φ)− d((Mφ∧ψ,Γ), ψ)|+ 2/p, which proofs our inequality. J
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